Use the reduction of order to find the general solution of the given differential equation. Here, the indicated function y_(1)(x) is solution of the associated homogeneous equation.
y^('')-3y^(')-4y=2e^(-x),y_(1)(x)=e^(-x)
If you do not use the reduction of order, you do not get full score.
y(x)=C_(1)e^(-x)+C_(2)e^(4x)-(2)/(5)xe^(-x)
y(x)=C_(1)e^(-x)+C_(2)e^(4x)+xe^(-x)
y(x)=C_(1)e^(-x)+C_(2)e^(4x)
y(x)=C_(1)e^(-x)+C_(2)e^(4x)+(2)/(5)xe^(-x)