(a) Evaluate the partition function of a quantum mechanical N-oscillator system. From Z_(N)(beta)=inte^(-beta E)Omega(E)dE, and using the asymptotic formulae ln Omega(E)~~ln Z(beta^(**))+beta^(**)E, where beta^(**) is determined by (del ln Z(beta^(**)))/(delbeta^(**))=-E, show that if we let E^(')=E-(1)/(2)N?omega (b) E^(')=N(?omegae^(-beta//?omega))/(1-e^(-beta h omega)) (c) S=Nk[((E)/(N?omega)+(1)/(2))ln((E)/(N?omega)+(1)/(2))-((E)/(N?omega)-(1)/(2))ln((E)/(N?omega)-(1)/(2))]