A veterinarian is conducting a comprehensive study on a new treatment for a rare dog disease. The treatment's success varies significantly depending on the disease's severity. The veterinarian has categorized the disease into three distinct severity levels: mild, moderate, and severe. For mild cases, the treatment shows a 60% success rate. Moderate severity cases have a 20% success rate, while severe cases present the most challenging scenario with only a 15% success rate. Part a) Moderate Severity Treatment Analysis In this initial phase of the study, the veterinarian was allocated five dogs diagnosed with moderate severity disease, so each of them has a 20% success rate. The clinic offers a standard compensation of $100 for each successful treatment. Calculate the expected average financial gain. Calculate the standard deviation of the financial gain. 89.44 Determine the probability of successfully treating four or more dogs out of the five treated. Part b) Random Severity Distribution Scenario Dogs arriving at the clinic now have an equal probability (discrete uniform) of being in any of the three severity categories. This means each dog has a one-third chance of being classified as mild, moderate, or severe, with corresponding success rates of 60%,20%, and 15% respectively. The veterinarian still receives $100 per successfully treated dog. Compute the new expected average financial gain. 158.33 Calculate the new standard deviation of the financial gain. Determine the new probability of successfully treating four or more dogs out of the five treated.