Change the integral to spherical coordinates.
\int_(-2)^2 \int_0^(\sqrt(4-x^(2))) \int_(\sqrt(x^(2)+y^(2)))^2 z^(2)dzdydx=
=\int_0^a \int_0^b \int_0^c f(\rho ,\theta ,\phi )d\rho d\phi d\theta
(Be sure to enter the limits in the correct order; see the instructions below for the upper limits a, b, and c)
?
a=
b=
?
c=
?
f(\rho ,\theta ,\phi )=
?
(enter
a,b,c,d
, or e) a.
\rho ^(2)sin(\phi )
b.
\rho ^(2)cos^(2)(\phi )
c.
\rho ^(2)sin^(2)(\phi )
d.
\rho ^(4)sin(\phi )cos^(2)(\phi )
e.
\rho ^(4)sin^(3)(\phi )
enter rho for
\rho
and enter theta for
\theta
enter pi for
\pi
; for example, enter pi/2 for
(\pi )/(2)
and enter 2 pi for
2\pi
; do not insert a space a multiplication operator