Compute the line integral using Stokes' Theorem assuming a right-hand Cartesian coordinate system and
the z-component of the surface normal to be nonnegative.
(a) (4 points) For F=[5x+5z,2z^(2),5y^(2)], compute the line integral counterclockwise around the triangle
with vertices (0,0,0),(1,0,0),(1,1,0).
(b) (6 points) For F=[xy,yz,2x^(2)], compute the line integral for the boundary of the plane x+y+z=1
in the first octant.