Determine the following integrals: (a)
\int_1^2 (dx)/(x\sqrt(4+x^(2)))(b)
\int xe^(3x)dx(c)
\int e^(-y)cos(y)dy(d)
\int cos^(3)(4x)dx(e)
\int sin^(4)(2x)cos(2x)dx(f)
\int sec^(3)(x)tan^(3)(x)dx(g)
\int (3dx)/(\sqrt(1+9x^(2)))(h)
\int (5dx)/(\sqrt(25x^(2)-9))(i)
\int (2x+1)/(x^(2)-7x+12)dx(j)
\int (x^(3)dx)/(x^(2)-2x+1)(k)
\int_0^4 (dx)/(\sqrt(4-x))(I)
\int_(-\infty )^2 (2dx)/(x^(2)+4)(m)
\int_(-\infty )^(\infty ) 2xe^(-x^(2))dx