Problem # 1. Functions of random variables: a) Let random variable
xhave probability density function
f_(x)(x)=\alpha e^(-\alpha x)u(x), where
u(*)is the unit step function, and
\alpha >0. Define derived random variable
Y=g(x)=log_(e)[1-e^(-\alpha x)]Find the
PDFf_(Y)(y). b) Next, consider any continuous random variable
Wwith known
PDF,f_(W)(w). Define derived random variable
Z=h(W)=log_(e)[F_(W)(W)]where
F_(W)(*)is the
CDFof
W. Find the
PDFf_(Z)(z).
