Home / Expert Answers / Advanced Math / problem-6-specify-whether-the-following-statement-are-true-or-false-no-justification-necessary-pa191

(Solved): Problem 6 Specify whether the following statement are TRUE or FALSE (no justification necessary). ( ...



Problem 6 Specify whether the following statement are TRUE or FALSE (no justification necessary). (a) Let

AinR^(n\times n)

. If

det(A)=0

, a linear system

Ax=b

never has a solution. (b) Let

AinR^(n\times n)

. If the null space

N(A)={0}

, then you can always find a unique solution for a linear system

Ax=b

. (c)

AB=BA

for any square matrices

AinR^(n\times n)

and

BinR^(n\times n)

. (d) For any vectors

x,yinR^(n)

the following inequality holds:

||x||_(2)||y||_(2)<|x^(T)y|

. (e) For any

AinR^(m\times n)

and

BinR^(k\times n)

the set

{xinR^(n):Ax=0,Bx=0}

is a subspace. (f) Given nonzero vectors

xinR^(m)

and

yinR^(n),dim(R(xy^(T)))=1

. (g) For any

AinR^(m\times n)

and

BinR^(m\times k)

the set

{(yinR^(m):y=Ax):}

for some

xinR^(n)

or

y=Bz

for some

{:zinR^(k)}

is a subspace. (h) For

AinR^(m\times n),||A||_(F)^(2)=tr(A^(T)A)

. BONUS If

dim(R(A))=mAx=bAinR^(m\times n),m, satisfies dim(R(A))=m, then you can always find a unique solution for a linear system Ax=b.


We have an Answer from Expert

View Expert Answer

Expert Answer


We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe