Problem 6 Specify whether the following statement are TRUE or FALSE (no justification necessary). (a) Let
AinR^(n\times n)
. If
det(A)=0
, a linear system
Ax=b
never has a solution. (b) Let
AinR^(n\times n)
. If the null space
N(A)={0}
, then you can always find a unique solution for a linear system
Ax=b
. (c)
AB=BA
for any square matrices
AinR^(n\times n)
and
BinR^(n\times n)
. (d) For any vectors
x,yinR^(n)
the following inequality holds:
||x||_(2)||y||_(2)<|x^(T)y|
. (e) For any
AinR^(m\times n)
and
BinR^(k\times n)
the set
{xinR^(n):Ax=0,Bx=0}
is a subspace. (f) Given nonzero vectors
xinR^(m)
and
yinR^(n),dim(R(xy^(T)))=1
. (g) For any
AinR^(m\times n)
and
BinR^(m\times k)
the set
{(yinR^(m):y=Ax):}
for some
xinR^(n)
or
y=Bz
for some
{:zinR^(k)}
is a subspace. (h) For
AinR^(m\times n),||A||_(F)^(2)=tr(A^(T)A)
. BONUS If
dim(R(A))=mAx=bAinR^(m\times n),m, satisfies dim(R(A))=m, then you can always find a unique solution
for a linear system Ax=b.