Question 1 (10 points) Let
y(t)
be a solution of the differential equation
y^(')=ry(1-(y)/(K)),r>0,K>0
Find the interval
I_(in )
where the solution is an increasing function of
t
, and the interval
I_(de )
where the solution is a decreasing function of
t
. Below denotes the empty set.
I_(in )=(-\infty ,0)
and
I_(de )=(0,\infty )
I_(in )=(-\infty ,K)
and
I_(de )=(K,\infty )
\iota _(in )-(w)
and
{
(
:+-de-1?,v)\cup (v,?)
} None of the options displayed.
I_(in )=(K,\infty )
and
I_(de)=(-\infty ,K)
I_(in )=(0,K)
and
I_(de)=(-\infty ,0)\cup (K,\infty )
and
{
(
:_(d)e-1?,v)\cup (v,?)
} None of the options displayed.
I_(in )=(K,\infty )
and
I_(de)=(-\infty ,K)
I_(in )=(0,K)
and
I_(de)=(-\infty ,0)\cup (K,\infty )
I_(in )=(-\infty ,0)\cup (0,\infty )
and
I_(in )=(-\infty ,0)\cup (K,\infty )
and
I_(de)=(0,K)
We need the solution formula to find these intervals. Question 1 (10 points) Let
y(t)
be a solution of the differential equation
y^(')=ry(1-(y)/(K)),r>0,K>0
Find the interval
I_(in )
where the solution is an increasing function of
t
, and the interval
I_(de )
where the solution is a decreasing function of
t
. Below denotes the empty set.
I_(in )=(-\infty ,0)
and
I_(de )=(0,\infty )
I_(in )=(-\infty ,K)
and
I_(de)=(K,\infty )
and
_()
de
{
(
:-1?,v)\cup (v,?)
} None of the options displayed.
I_(in )=(K,\infty )
and
I_(de)=(-\infty ,K)
I_(in )=(0,K)
and
I_(de)=(-\infty ,0)\cup (K,\infty )