Question 1
L{u_(1)(t)[t 8]}=e^(-s)((1)/(s^(2)) (k)/(s))
where
k=
Question 2 If
m,\gamma ,k!=0
then a particular (non-homogeneous) solution of
\mu ^('') \gamma u^(') ku=3sin(2t) 4
takes the form:
y_(p)=Asin(2t) (4)/(k)
y_(p)=Acos(2t) (4)/(k)
y_(p)=Asin(2t) Bcos(2t) (4)/(k)
y_(p)=Atsin(2t) (4)/(k)
y_(p)=Atcos(2t) (4)/(k)
y_(p)=Atsin(2t) Btcos(2t) (4)/(k)
y_(p)=t(Asin(2t) (4)/(k))
y_(p)=t(Acos(2t) (4)/(k))
y_(p)=t(Asin(2t) Bcos(2t) (4)/(k))