Student ID: Problem 1: Given that
A=[[-1,-1,2],[1,1,-3],[2,1,3]]
and
v=(v_(1),v_(2),v_(3))^(T)
. write the vector
u=Av
as a linear combination of A columns. Problem 2: Let
A
and
B
be two
n\times n
matrices. Which of the following is true:
(2AB)^(-1)=(1)/(2)A^(-1)B^(-1)
(2AB)^(-1)=2A^(-1)B^(-1)
(2AB)^(-1)=(1)/(2)B^(-1)A^(-1)
(2AB)^(-1)=2B^(-1)A^(-1)
Problem 3: Given that
A=[[1,2],[2,1]]
, find
tr(A^(T)A)
. Problem 4: Let the matrix
C=AB
, where A and B are given by:
A=[[-1,-1,\alpha ],[1,1,-3],[2,1,3]],B=[[1,1,-2],[3,1,-1],[-2,2,1]]
If
c_(1,3)=2
find the value of
\alpha
.