Home /
Expert Answers /
Chemistry /
the-reaction-of-carbon-monoxide-g-with-water-l-to-form-carbon-dioxide-g-and-hydrogen-g-proceeds-pa568
(Solved): The reaction of carbon monoxide(g) with water(l) to form carbon dioxide(g) and hydrogen(g) proceeds ...
The reaction of carbon monoxide(g) with water(l) to form carbon dioxide(g) and hydrogen(g) proceeds as follows: \[ \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \] When \( 7.25 \) grams of \( \mathrm{CO}(\mathrm{g}) \) react with sufficient \( \mathrm{H}_{2} \mathrm{O}(1), 0.725 \mathrm{~kJ} \) of energy is absorbed. What is the value of \( \Delta H \) for the chemical equation given? \( 2.80 \mathrm{~kJ} / \mathrm{mol} \) \( 0.100 \mathrm{~kJ} / \mathrm{mol} \) \( 0.188 \mathrm{~kJ} / \mathrm{mol} \) \( 1.80 \mathrm{~kJ} / \mathrm{mol} \) \( 5.26 \mathrm{~kJ} / \mathrm{mol} \)
The following information is given for water, \( \mathrm{H}_{2} \mathrm{O} \), at \( 1 \mathrm{~atm} \) : boiling point \( =100^{\circ} \mathrm{C} \quad \Delta H_{\text {va? }}=40.7 \mathrm{~kJ} / \mathrm{mol} \) melting point \( =0.000^{\circ} \mathrm{C} \quad \Delta H_{\text {fus }}=6.01 \mathrm{~kJ} / \mathrm{mol} \) specific heat liquid \( =4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \) At a pressure of \( 1 \mathrm{~atm} \), how many \( \mathrm{kJ} \) of heat are needed to vaporize a \( 39.6 \mathrm{~g} \) sample of liquid water at its normal boiling point of \( 100^{\circ} \mathrm{C} \) ? \[ \begin{array}{c} 1610 \mathrm{~kJ} \\ 238 \mathrm{~kJ} \\ 16.6 \mathrm{~kJ} \\ 89.4 \\ 13.2 \mathrm{~kJ} \end{array} \]
A sample of oxygen gas at a pressure of \( 1.18 \mathrm{~atm} \) and a temperature of \( 24.6^{\circ} \mathrm{C} \), occupies a volume of 868 \( \mathrm{mL} \). If the gas is compressed at a constant temperature until its pressure is \( 1.38 \mathrm{~atm} \), the volume of the gas sample will be \[ \begin{array}{l} 742 \mathrm{~mL} \\ 304 \mathrm{~mL} \\ 102 \mathrm{~mL} \\ 578 \mathrm{~mL} \\ 221 \mathrm{~mL} \end{array} \]
A flexible vessel contains \( 53 \mathrm{~L} \) of gas where the pressure is \( 1.7 \mathrm{~atm} \). What will the volume be when the pressure is \( 0.88 \mathrm{~atm} \), the temperature remaining constant? \( 0.01 \mathrm{~L} \) \( 27 \mathrm{~L} \) \( 53 \mathrm{~L} \) 102 L \( 0.049 \mathrm{~L} \)
What is the pressure of a \( 91.8 \mathrm{~L} \) gas sample containing \( 4.12 \mathrm{~mol} \) of gas at \( 25.9^{\circ} \mathrm{C} \) ? \( (\mathrm{R}=0.082057 \mathrm{~L} \cdot \mathrm{atm} / \mathrm{K} \cdot \mathrm{mol}, 1 \mathrm{~atm}=760 \mathrm{mmHg}) \) \[ \begin{array}{l} 7.25 \times 10^{1} \mathrm{~mm} \mathrm{H}_{g} \\ 1.1 \mathrm{~mm} \mathrm{Hg} \\ 8.37 \times 10^{2} \mathrm{~mm} \mathrm{Hg} \\ 6.9 \times 10^{2} \mathrm{~mm} \mathrm{Hg}_{\mathrm{g}} \\ 1.45 \times 10^{-3} \mathrm{~mm} \mathrm{Hg} \end{array} \]