#This exam consists of 25 multiple choice questions; answer all questions by choosing the be #Choose the best answer, then put it in the answer sheet table shown i Q1) Discrete random variables L and T have the following joint PMF, find PL.T (1.1) /= 40 sec /= 60 sec 1=1 page 0.15 0.1 1=2 pages 0.3 0.2 I= 3 pages 0.15 0.1 A. 50 C.96 D. 24 E. none correct 02) For random variables in the previous question (Q1): find Cov[LT]? A. 1 C.-1 D. 0.5 E. none correct 03) For random variables in the previous question (Q1): find Var[L+T]? A. 0.50 B. 96.5 C.96 D.0 E. none correct 04) For random variables in the previous question (Q1): find pr? A. 1 B. 0.5 C.-1 E. none correct 05) Random variables L & T in the previous question (Q1) are: A. independent & orthogonal C. independent & uncorrelated 4.1 B. 46 B.0 D. O B. dependent & uncorrelated D. dependent & orthogonal E. 06) For random variables L & T in the previous question (Q1), if randon V- L.T and the event A-(V280); find PL,A(3,60)? A. 2/9 B. 2/15 C. 2/5 D. 1/9 Q7) X is a Gaussian random variable with parameters [4,4], find P[X B. 0 C. 0.8413 E.n 8) Y is an exponential random variable with Var[Y]-25, find E[Y]? B. 1/5 C. 25 D. 1/25 Random variables X and Y have the following joint PDF, find c fxx(x,y)=(cxy 0?x?1,0 ?y?1, and 0 otherwise D. 0.5 E. ne E.
#Choose the best answer, then put it in the answer sheet table shown i Q1) Discrete random variables L and T have the following joint PMF, find / = 60 sec PL.T (1,1) 1=1 page 1 = 40 sec 0.15 0.1 1 = 2 pages 0.3 0.2 1 = 3 pages 0.15 0.1 Q6) For random variables L & T in the previous question (Q1), if randon V=L.T and the event A={V280}; find PL,TIA(3,60)? A. 2/9 B. 2/15 C. 2/5 D. 1/9 Q7) X is a Gaussian random variable with parameters [4,4], find P[X> 4.1 C. 0.8413 5 B.0 D. 0.5 C. 25 E. nc 8) Y is an exponential random variable with Var[Y]=25, find E[Y]? B. 1/5 D. 1/25 Random variables X and Y have the following joint PDF, find c fxx(x,y)={cxy² 0?x?1, 0?y?1, and 0 otherwise) E. n E.